We describe a combination of theoretical and experimental techniques that have been applied to the study of grain boundaries in SrTiO₃, with particular attention to $\Sigma 3$- and $\Sigma (100)$-oriented grain boundaries. Several interatomic potentials from the literature have been tested in order to explore how accurately they describe the structures of the $\Sigma 3(111)[\bar{1} 1 0]$ and $\Sigma 3(112)[\bar{1} 1 0]$ boundaries[1]. These potentials are of three types: the rigid ion model, with either fixed formal or partial charges, and the shell model. We have also performed a Density Functional Theory (DFT) study with the CASTEP code[2] on the same boundaries, and used the generated data (interface structures and energies) to evaluate the quality of the interatomic potentials with the GULP code[3]. The different potentials and the DFT calculations all predict two alternative structures for the $\Sigma 3(112)[\bar{1} 1 0]$ boundary, one mirror-symmetric and one displaced by $2a\langle\bar{1} 1 1\rangle/3$, and they predict qualitatively similar patterns of atomic relaxation, but boundary energies, excess volumes and their ordering are not consistent between the models. The energies of mirror-symmetric and displaced $\Sigma 3(112)[\bar{1} 1 0]$ boundaries are indistinguishable within the accuracy of the DFT calculations. An electron microscopy study, which includes high-resolution transmission and high-angle annular dark field methods, has been applied to mapping atomic columns.
and testing the theoretical models. In a near-$\Sigma 3(112)[\overline{1} 1 0]$ boundary, prepared from a bicrystal, patches of the symmetric structure are found, with intensities consistent with a deficit of strontium at the boundary plane.

We also test successfully on these boundaries a promising genetic algorithm for discovering low-energy grain boundary structures in an unbiased fashion, including the effect of non-stoichiometry[4].

This work was funded by the EU 6th Framework Programme within the INCEMS project (contract number 013862). A full review of the theoretical study and corresponding electron microscopy is to be published in Annual Review of Materials Research.

References

