First-Principles Study of Magnetism and Electronic Structure in Eu2+ Perovskite Oxides

H. Akamatsu1, Y. Kumagai1, F. Oba1, K. Fujita2, K. Tanaka2, and I. Tanaka1

1Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
2Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

The magnetism of Eu2+ compounds has been intensively investigated from both experimental and theoretical viewpoints since the discovery of ferromagnetism in EuO. Recently, EuTiO\textsubscript{3} has attracted much interest due to its stress1 or carrier-induced2 ferromagnetism. Bulk EuTiO\textsubscript{3} has a cubic perovskite structure [Fig. 1(a)], and the localized 4fsp spins belonging to the A-site Eu2+ ions compose a simple cubic lattice with a G-type antiferromagnetic (AFM) ordering below $T_N=5.5$ K [Fig. 1(b)]. Fujita et al.1 have observed ferromagnetic (FM) behavior in an epitaxial (001)-oriented EuTiO\textsubscript{3} thin film with a 2 \% out-of-plane elongation. In addition, a previous first-principles study has predicted a critical balance between FM and AFM states in EuTiO\textsubscript{3}, leading to its cell-volume-dependent magnetism.3 The mechanism behind such magnetic behavior, however, remains to be clarified; elucidation of the magnetic interactions requires understanding of the exchange mechanism in terms of the electronic structure. In this study, we have systematically investigated the magnetic interactions, electronic structure, and their cell-volume dependence in Eu2+ perovskite oxides using first-principles calculations.

The calculations were performed using the projector augmented-wave method and the generalized gradient approximation (GGA) as implemented in the VASP code.4 The wave functions were expanded in a plane-wave basis set with an energy cutoff of 550 eV. Spin polarization was taken into account for all calculations. The strong on-site Coulomb interaction on the Eu 4f orbitals was considered by the $+U$ correction (GGA+U). The $\sqrt{2}\times\sqrt{2}\times2$ supercell was used in order to describe the four magnetic configurations, namely, G, F, A, and C types shown in Fig. 1(b). The nearest-neighbor (J_1) and next-nearest-neighbor (J_2) exchange interactions [Fig. 1(a)] were evaluated as a function of cell volume (V), by mapping the total energies of the four magnetic configurations with varied lattice constants onto the Heisenberg Hamiltonian,

$$H = -2\sum_{i<j} J_{ij} S_i \cdot S_j.$$

Figure 2 shows the dependence of J_1 and J_2 on V for EuTiO\textsubscript{3} at $U_{\text{eff}}=4$ eV. With an increase in V, the sign of J_1 changes from the negative to the positive, accompanied by the switching of the magnetic ground state from the G-type AFM to FM state. This is qualitatively consistent with the ferromagnetism in the epitaxial thin film with lattice expansion.1 An analysis of the partial density of states (PDOS) reveals that the valence band is mainly composed of Eu 4fsp and O 2p states, and the conduction band Ti 3d and Eu 5d states. Figure 3 depicts the PDOS in the energy region near the Eu 4f states for a series of V. As V is decreased, Eu 4f and Ti 3d states interact with each other more strongly. These results are well explained by the scenario of AFM superexchange interactions between Eu 4fsp spins via Ti 3d states. The cell-volume contraction facilitates...
mixing of Eu 4f and Ti 3d states, leading to the enhancement of the AFM superexchange interaction. Systematic calculations for EuM03 (M=Zr, Si, and Ge) and Eu2TiO4 support the importance of the interactions between the Eu 4f and B-site cation d states in the magnetism of EuTiO3 and related systems.

Acknowledgement

This work was supported by the Grant-in-Aid for Scientific Research on Priority Areas “Atomic Scale Modification” (No. 474) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. HA was also supported by the Research Fellowship for Young Scientists (Grant No. 20-6726) from the Japan Society for the Promotion of Science.

References

FIG. 1. (a) Crystal structure of EuTiO3. The numbers 1 and 2 refer to the spin exchange paths of J_1 and J_2, respectively. (b) Schematic of the four magnetic configurations, A, C, F, and G.

FIG. 2. Cell-volume dependence of J_1 and J_2 for EuTiO3. The equilibrium volume is indicated by V_{eq}.

FIG. 3. Partial density of states for EuTiO3 with a G-type AFM ordering in the energy region near the valence Eu 4f states for $V = (a)\, 210$, (b)\, 245, and (c)\, 283 Å³.