Microstructure in MgB$_2$/Ni Alternately-Layered Superconducting Film

S. Hata1, H. Sosiati2, Y. Shimada1, T. Doi3, A. Matsumoto4, H. Kitaguchi4, K. Ikeda1, H. Nakashima1

1Interdisciplinary Graduate School of Eng. Sci., Kyushu University, Fukuoka 816-8580, Japan
2RCMS, Faculty of Mathematics and Sciences, University of Indonesia, Jakarta 10430, Indonesia
3Faculty of Engineering, Kagoshima University, Kagoshima 890-0065, Japan
4National Institute for Materials Science, Tsukuba 305-0047, Japan

The critical current density, J_c, in MgB$_2$ superconductor depends strongly on microstructures such as crystalline grain boundaries, impurity phases, etc. The authors reported that MgB$_2$ films with an artificial MgB$_2$/Ni alternately-layered structure show a notable superconducting property: J_c is significantly enhanced when a magnetic field is applied in parallel to the MgB$_2$/Ni multilayer [1-3]. In the present study, the MgB$_2$/Ni alternately-layered structure has been observed in detail by electron microscopy.

MgB$_2$ and Ni layers were alternately deposited on a Si(001) substrate with a thin B buffer layer using an electron beam evaporation technique [1-3]. During the deposition, the substrate was kept at 533 K. Thicknesses of MgB$_2$ and Ni layers, evaluated from the deposition rates of Mg, B and Ni, were 15-35 nm and 0.2 nm respectively, and the total film thickness were 300 nm. Cross-sectional specimens of the MgB$_2$/Ni multilayered film were prepared by a focused ion beam (FIB) microsampling technique. Microstructural observations were carried out using an FEI Tecnai-F20 transmission electron microscope (TEM) operating at an accelerating voltage of 200 kV.

Figure 1 shows a result of cross-sectional TEM observation. The bright-field (BF) image (a) confirms the alternate deposition of MgB$_2$ and Ni layers. The diffraction pattern taken from the MgB$_2$/Ni multilayer (b) exhibits clear diffraction from only MgB$_2$ phase. The dark-field (DF) images taken with different diffracted beams (c, d, e and f) indicate several features. MgB$_2$ crystals smaller than 100 nm show columnar arrangements perpendicular to the substrate, and c-axes of the MgB$_2$ crystals show preferred orientations along the columns (c). Ni layers in the DF images (d, e and f) are observed as bright bands. This DF image contrast cannot be explained by an assumption of a face-centered cubic (FCC) Ni phase formed in the Ni layers. Figure 2 shows a high-resolution (HR) TEM image together with a corresponding diffraction pattern and Fourier power spectra acquired from square regions denoted with broken lines. Both the MgB$_2$ and Ni layers exhibit two-dimensional lattice fringes. However, intensity maxima in the Fourier power spectra do not exhibit net-patterns corresponding to crystalline phases other than MgB$_2$, such as fcc-Ni. From the results, there is a possibility that thin ($\text{Mg}_{1-x}\text{Ni}_x$)B$_2$ layers are formed in the film and they act as strong flux-pinning centers.

The authors would like to thank T. Yoshidome for his TEM observations. This work was supported in part by Nanotechnology Support Project of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan and Research Promotion Bureau, MEXT, Japan under the contracts nos. 17-212, 17-213 and 18-191.

References
FIG. 1. (a) TEM BF image, (b) electron diffraction pattern, and (c, d, e and f) TEM DF images taken with different diffracted beams from MgB$_2$ crystals denoted in the figures.

FIG. 2. HRTEM image together with a corresponding diffraction pattern and Fourier power spectra taken from Ni layers indicated with open broken squares.