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 Perovskite titanates show ferroelectric phase transition in the low temperature 
region. (e.g., BaTiO3, PbTiO3) Among them, CdTiO3 shows orthorhombic room 
temperature phase Pnma(#62), and exhibit orthorhombic to orthorhombic ferroelectric 
phase transition at low temperature.[1] The recent rigorous Raman scattering study has 
revealed an ideal classical displacive-type phase transition, in which the soft mode 
softens toward zero-frequency at Tc ∼ 85.5 K obeying conventional Cochran’s law.[2] 
However, the crystal structure in the low-temperature region is still unclear due to the 
rather small displacement at the phase transition and difficulty in preparation of 
sufficiently large and high-quality single crystals for the structural analysis.[3] Both of 
possible ferroelectric structures Pna21(#33) and P21ma(#26) are found depending on the 
samples and experimental conditions. The situation is still controversial. Lebedev[4] 
reported theoretical phonon calculation only Γ-point of the Pnma of CdTiO3. He 
reported two softmode phonon in Pnma phase of CdTiO3, which read to Pna21(#33) and 
P21ma(#26) phase. In the present study, we performed series of a first-principles 
calculations of CdTiO3, in order to elucidate completely the mechanism of the 
ferroelectric phase transition and the structure of the low-temperature phase. The result 
clarifies that the low-temperature symmetry is Pna21 (#33) with the polarization axis 
along b-axis of the paraelectric Pnma phase. The calculated phonon dispersion structure 
clearly shows the existence of the ferroelectric soft mode in Γ-point of the Pnma phase, 
and it vanishes in the ferroelectric Pna21 phase, confirming the soft-mode-type phase 
transition of CdTiO3.(Fig.1) However, energy gain of this ferroelectric phase transition 
is very tiny, its only 0.2meV/f.u. In addition, the phonon dispersion relation, in another 
word, soft-modes are strongly depending on the lattice volume. As shown in fig.3(a), in 
the tensile condition (+2% of theoretical equivalent volume), not only B2u mode which 
read to Pna21(#33) phase but also B3u mode which reads to P21ma(#26) phase show 
imaginary frequency. On the other hand, As shown in fig.3(b), in the compression 
condition (-2% of theoretical equivalent volume), these soft-modes are vanished. This 
indicates that ferroelectric phase transition of CdTiO3 Pnma phase is very sensitive to 
pressure/strain. Depending on the stress/pressure both of ferroelectric phase Pna21(#33) 
phase and P21ma(#26) phase can be stabilized. This can be a explanation for 
controversial experimental results of ferroelectric structure of CdTiO3. [5] 
 
 



 

 

 

  

 

 
Fig. 2 Directions of ion displacements in the 
Pnma structure corresponding to (a) B2u and (b) 
B3u modes associated with transformations to 
the Pna21 and P21ma phases, respectively. 

Fig. 1 Theoretical phonon dispersion curves 
for Pnma phases of CdTiO3. 
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Fig. 3 Theoretical phonon dispersion curves for the Pnma phase of CdTiO3 when the 
volume is uniformly (a) expanded by 2%, and (b) contracted by 2% relative to the 
equilibrium value. 
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