Nanostructural Characterization of $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ Superconductor Tapes Fabricated by TFA-MOD Process Using Starting Solutions with Different Cation Ratios

Ryuji Yoshida1, Takeharu Kato1, Ko-ichi Nakaoka2, Masateru Yoshizumi2, Teruo Izumi2, Tsukasa Hirayama1, Yuh Shiohara2
1Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya, 456-8587, Japan
2Superconductivity Research Laboratory, International Superconductivity Technology Center, KSP R&D Wing A-9F, 3-2-1 Sakado, Takatsu-ku, Kawasaki-Shi, Kanagawa, 213-0012, Japan

Trifluoroacetate-metal organic deposition (TFA-MOD) method is one of low cost process for fabrication of $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ (YBCO) superconductor tapes. It is reported that the YBCO films fabricated by the TFA-MOD process using starting solutions with cation ratios of Ba-deficient (Ba/Y < 2.0) have higher critical current (I_c) values than that of stoichiometric composition (Ba/Y = 2.0). We fabricated the TFA-MOD YBCO films using starting solutions with the Ba-deficient ($\text{Y}:\text{Ba}:\text{Cu} = 1.0:1.5:3.0$) and the stoichiometric composition ($\text{Y}:\text{Ba}:\text{Cu} = 1.0:2.0:3.0$) on Hastelloy$^\text{TR}$ metal substrates with a CeO$_2$/LaMnO$_3$/MgO/Gd-Zr-O buffer layer [1,2]. Fig. 1 shows the relationship between the I_c values of the holding time in the crystallization process. The highest I_c values for the respective films were achieved with a 100 min crystallization process. After further long time crystallization, the I_c values of the stoichiometric composition films decreased, while those of the Ba-deficient films stayed the same [3]. In this study, we observed the nanostructures of these films using scanning electron microscopy (SEM), a focused ion beam (FIB)-SEM dual beam system, and transmission electron microscopy (TEM) to compare the nanostructural changes due to the influence of the starting solution composition during the crystallization process.

Figure 2 shows cross-sectional TEM images of (a) Ba-deficient and (b) stoichiometric composition films after 100 min crystallization process. Fig. 3 (a) - (d) shows the results of EDS elemental maps of Y, Ba, Cu, and F corresponding to the region surrounded by the red-dotted line in Fig. 2 (a), and Fig. 3 (e) – (h) shows Y, Ba, Cu, and F maps corresponding to the region by the red-dotted line in Fig. 2 (b). Both Ba-deficient and stoichiometric composition films, after the 100 min crystallization process, are mainly composed of c-axis oriented YBCO grains. In addition, CuO, $\text{Y}_2\text{Cu}_2\text{O}_5$ grains, and BaF_2 regions with an average size of 200 nm are distributed in the films. However, the quantity of BaF_2 grains of the stoichiometric composition film are quite larger than that of the Ba-deficient film. Fig. 4 (a) and (b) shows a cross-sectional TEM image of the Ba-deficient and the stoichiometric composition film after 180 min crystallization process, respectively. Fig. 5 (a) - (d) shows the results of EDS elemental maps of Y, Ba, Cu, and F corresponding to the region surrounded by the red-dotted line in Fig. 4 (a), and Fig. 5 (e) – (h) shows Y, Ba, Cu, and F maps corresponding to the region by the red-dotted line in Fig. 4 (b). After 180 min of crystallization process, some of BaF_2 grains convert to BaCuO_2 grains in the stoichiometric composition film. Fig. 6 shows a 3D reconstructed image of cracks formed in the stoichiometric film after 180 min crystallization process using the FIB-SEM dual beam system. These cracks have the radial shapes and seemed to be occurred around the larger sized secondary phases.
(BaCuO$_2$, CuO, Y$_2$Cu$_2$O$_5$). Moreover, YBCO c-axis oriented grains are broken around the cracks. These nanostructural changes can be observed only in the stoichiometric composition films after 180 min crystallization process with its I_c reduction. Therefore, the formation of the larger size secondary phase and the cracks in the stoichiometric composition YBCO film are one of the reasons for its I_c degradation.

This work includes the results supported by the Ministry of Economy, Trade and Industry (METI) as “Development of Fundamental Technologies for HTS Coils” and by the New Energy and Industrial Technology Development Organization (NEDO) as “Development of Materials & Power Application of Coated Conductors”.

FIG. 4. Cross-sectional TEM images of 180 min crystallization process. (a) Ba-deficient, (b) stoichiometric composition. Moreover, YBCO c-axis oriented grains are broken around the cracks. These nanostructural changes can be observed only in the stoichiometric composition films after 180 min crystallization process with its I_c reduction. Therefore, the formation of the larger size secondary phase and the cracks in the stoichiometric composition YBCO film are one of the reasons for its I_c degradation.

This work includes the results supported by the Ministry of Economy, Trade and Industry (METI) as “Development of Fundamental Technologies for HTS Coils” and by the New Energy and Industrial Technology Development Organization (NEDO) as “Development of Materials & Power Application of Coated Conductors”.

References

FIG. 1. Relationship between I_c values of the holding time in crystallization process.

FIG. 2. Cross-sectional TEM images of 100 min crystallization process. (a) Ba-deficient, (b) stoichiometric composition.

FIG. 3. Results of EDS elemental maps. (a) Y, (b) Ba, (c) Cu, (d) F map corresponds to red-dotted line region in Fig. 2 (a). (e) Y, (f) Ba, (g) Cu, (h) F map to red-dotted line in Fig. 2 (b).

FIG. 4. Cross-sectional TEM images of 180 min crystallization process. (a) Ba-deficient, (b) stoichiometric composition.

FIG. 5. Results of EDS elemental maps. (a) Y, (b) Ba, (c) Cu, (d) F map corresponds to red-dotted line region in Fig. 4 (a). (e) Y, (f) Ba, (g) Cu, (h) F map to red-dotted line in Fig. 4 (b).

FIG. 6. 3D reconstructed image of cracks formed in the stoichiometric film after 180 min crystallization process using the FIB-SEM dual beam system.